AI Roadmap Workbook for Non-Technical Business Leaders
A clear, hype-free workbook showing where AI can actually help your business — and where it won’t.
Dev Guys Team — Smart thinking. Simple execution. Fast delivery.
The Need for This Workbook
In today’s business world, leaders are often told they must have an AI strategy. AI discussions are happening everywhere—from vendors to competitors. But business heads often struggle between two bad decisions:
• Accepting every proposal and hoping it works out.
• Declining AI entirely because of confusion or doubt.
This workbook offers a balanced third option: a calm, realistic way to identify where AI truly fits in your business — and where it doesn’t.
You don’t need to understand AI models or algorithms — just your workflows, data, and decisions. AI is simply a tool built on top of those foundations.
Best Way to Apply This Workbook
You can complete this alone or with your management team. The aim isn’t to finish quickly but to think clearly. By the end, you’ll have:
• Clear AI ideas that truly affect your P&L.
• Recognition of where AI adds no value — and that’s okay.
• A structured sequence of projects instead of random pilots.
Use it for insight, not just as a template. A good roadmap fits on one slide and makes sense to your CFO.
AI strategy equals good business logic, simply expressed.
Step 1 — Business First
Begin with Results, Not Technology
The usual focus on bots and models misses the real point. Non-technical leaders should start from business outcomes instead.
Ask:
• What top objectives are driving your business now?
• Where are teams overworked or error-prone?
• Which decisions are delayed because information is hard to find?
It should improve something tangible — speed, accuracy, or cost. Only link AI to real, trackable business metrics.
Leaders who skip this step collect shiny tools; those who follow it build lasting leverage.
Step 2 — See the Work
Map Workflows, Not Tools
Before deciding where AI fits, observe how work really flows — not how it’s described in meetings. Pose one question: “What happens between X starting and Y completing?”.
Examples include:
• Lead comes in ? assigned ? follow-up ? quote ? revision ? close/lost.
• Support ticket ? triaged ? answered ? escalated ? resolved.
• Invoice generated ? sent ? reminded ? paid.
Inputs, actions, outputs — that’s the simple structure. Ideal AI zones: messy inputs, repeatable steps, consistent outputs.
Rank and Select AI Use Cases
Evaluate Each Use Case for Business Value
Not every use case deserves action; prioritise by impact and feasibility.
Use a mental 2x2 chart — impact vs effort.
• Focus first on small, high-impact changes.
• Big strategic initiatives take time but deliver scale.
• Nice-to-Haves — low impact, low effort.
• High cost, low reward — skip them.
Add risk as a filter: where can AI act safely, and where must humans approve?.
Small wins set the foundation for larger bets.
Laying Strong Foundations
Data Quality Before AI Quality
Messy data ruins good AI; fix the base first. Clarity first, automation later.
Design Human-in-the-Loop by Default
AI should draft, suggest, or monitor — not act blindly. Build confidence before full automation.
Common Traps
Steer Clear of Predictable Failures
01. The Demo Illusion — excitement without strategy.
02. The Pilot Graveyard — endless pilots that never scale.
03. The Full Automation Fantasy — imagining instant department replacement.
Define ownership, success, and rollout paths early.
Partnering with Vendors and Developers
Your role is to define the problem clearly, not design the model. State outcomes clearly — e.g., “reduce response time 40%”. Share messy data and edge cases so tech partners understand reality. Clarify success early and plan stepwise rollouts.
Ask vendors for proof from similar businesses — and what failed first.
Signals & Checklist
Signs Your AI Roadmap Is Actually Healthy
Your AI plan fits on one business slide.
Your focus remains on business, not tools.
Finance understands why these projects exist.
Quick AI Validation Guide
Before any project, confirm:
• Which business metric does this improve?
• Which workflow is involved, and can it be described simply?
• Do we have data and process clarity?
• Azure Who owns the human oversight?
• What is the 3-month metric?
• What’s the fallback insight?
Conclusion
Good AI brings order, not confusion. It’s not a list of tools — it’s an execution strategy. True AI integration supports your business invisibly.